If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+4=40
We move all terms to the left:
6x^2+4-(40)=0
We add all the numbers together, and all the variables
6x^2-36=0
a = 6; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·6·(-36)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*6}=\frac{0-12\sqrt{6}}{12} =-\frac{12\sqrt{6}}{12} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*6}=\frac{0+12\sqrt{6}}{12} =\frac{12\sqrt{6}}{12} =\sqrt{6} $
| 6+17u=-15-4u | | -17+x/5=3 | | 25.5=3x | | 12k+14=20k-26 | | 6t=14-t | | 20x+14=x+204 | | 3b+4=47 | | 5.9g+9=3.9g+13 | | 3(5x=4)-20=13-4 | | 7(w-6)=49 | | -4u−u−1=-9+3u | | 18-r=8r | | 7(w-6)=9 | | 5(-14)+2y=-6 | | 0.5x+0.5x=10.5x+3.5 | | 8x-4+3x=7x-(3-5x)+(-x+24) | | 35=6x+8 | | 14=5x-2/2 | | 5/10x+1/2x=21/2x+7/2 | | 11-3x=44*1 | | 10x+6-4=32 | | 2/5y=35 | | -10n-20=-12 | | (4+8)+(y+9)=180 | | 45=3/5y | | 3y2=6y | | 8/15=5y | | 12r=42 | | 25j^2-30j+9=0 | | 30=d-788/5 | | 14.79-6.2k=2.71-7k | | 14.79−6.2k=2.71−7k |